In the pentanuclear title complex, bis{μ2-1-(2-oxido-3-methoxybenzylidene)-5-(pyridin-2-ylmethylene)carbonohydrazide}-1κ4O,N,N’,N’’:2κ2O,N;2κ2O,N:3κ4O,N,N’,N’’-1,2,3-tricopper(II) bis{[1-(2-oxido-3-methoxybenzylidene)-5-(pyridin-2-ylmethylene)carbonohydrazide]-κ4O,N,N’,N’’-copper(II)} tetraperchlorate tetrahydrate (1), two monocationic mononuclear units and one dianionic trinuclear unit co-exist. The CuII centers in the mononuclear units as well as the two terminal CuII centers in the trinuclear unit are located in the N3O cavity of the ligand and are coordinated to a phenolate oxygen atom, to a pyridine nitrogen atom, to an imino nitrogen atom and to a hydrazinyl nitrogen atom. The third central Cu(II) atom in the trinuclear unit, which is hexacoordinated, is located in N2O4. The metal center is coordinated to two ligand molecule through one imino nitrogen atom one oxygen atom of a carbonyl moiety per ligand and two oxygen atom of water molecules. The tetracoordinated copper(II) ions are situated in distorted square planar environments, while the hexacoordinated copper(II) is located in octahedral geometry. In the mononuclear units, as well as in the trinuclear units, the methoxy oxygen atoms remain uncoordinated. Each atom of the uncoordinated perchlorate anions is disordered over two sets of sites in a 0.5 ratio. Four free water molecules are also present. In the crystal, the trinuclear cationic unit and the mononuclear cationic units are assembled into infinite layers. These layers are held together via electrostatic interactions, forming a three-dimensional structure.
Published in | Science Journal of Chemistry (Volume 11, Issue 1) |
DOI | 10.11648/j.sjc.20231101.13 |
Page(s) | 18-25 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
O-vanillin, Carbonhydrazide, Schiff Bases, Copper, Mononuclear, Trinuclear
[1] | Hanna, W. G. & Moawad, M. M. (2001). Synthesis, characterization, and antimicrobial activity of cobalt(II), nickel(II) and copper(II) complexes with new asymmetrical Schiff base ligands derived from 7-formyanil-substituted diamine-sulphoxine and acetylacetone. Transition Metal Chemistry, 26 (6), 644–651. https://doi.org/10.1023/A:1012066612090 |
[2] | Bermejo, M. R., González, A. M., Fondo, M., García-Deibe, A., Maneiro, M., Sanmartín, J., Hoyos, O. L. & Watkinson, M. (2000). A direct route to obtain manganese(III) complexes with a new class of asymmetrical Schiff base ligands. New Journal of Chemistry, 24 (4), 235–241. https://doi.org/10.1039/B000235F |
[3] | Hakimi, M., Ahmadi, S., Mardani, Z. & Mohr, F. (2019). Docking studies on an N4-donor Schiff base ligand and its Cu(II) complex supported by structural, spectral and theoretical studies. Journal of Chemical Research, 43 (5–6), 170–178. https://doi.org/10.1177/1747519819857505 |
[4] | Shukla, S. N., Gaur, P., Raidas, M. L. & Chaurasia, B. (2020). Tailored synthesis of unsymmetrical tetradentate ONNO Schiff base complexes of Fe(III), Co(II) and Ni(II): Spectroscopic characterization, DFT optimization, oxygen-binding study, antibacterial and anticorrosion activity. Journal of Molecular Structure, 1202, 127362. https://doi.org/10.1016/j.molstruc.2019.127362 |
[5] | Amali, I. B., Kesavan, M. P., Vijayakumar, V., Gandhi, N. I., Rajesh, J. & Rajagopal, G. (2019). Structural analysis, antimicrobial and cytotoxic studies on new metal(II) complexes containing N2O2 donor Schiff base ligand. Journal of Molecular Structure, 1183, 342–350. https://doi.org/10.1016/j.molstruc.2019.02.005 |
[6] | Mahadevi, P., Sumathi, S., Metha, A. & Singh, J. (2022). Synthesis, spectral, antioxidant, in vitro cytotoxicity activity and thermal analysis of Schiff base metal complexes with 2,2′-Bipyridine-4,4′-dicarboxylic acid as co-ligand. Journal of Molecular Structure, 1268, 133669. https://doi.org/10.1016/j.molstruc.2022.133669 |
[7] | Buvaylo, E. A., Nesterova, O. V., Goreshnik, E. A., Vyshniakova, H. V., Petrusenko, S. R. & Nesterov, D. S. (2022). Supramolecular diversity, theoretical investigation and antibacterial activity of Cu, Co and Cd complexes based on the tridentate N,N,O-Schiff base ligand formed sn situ. Molecules, 27 (23), 8233. https://doi.org/10.3390/molecules27238233 |
[8] | Adhikari, J., Bhattarai, A. & Chaudhary, N. K. (2023). Bioinorganic interest on Co(II) and Zn(II) complexes of pyrrole-based surfactant ligand: synthesis, characterization, and in silico-ADME study. Journal of Molecular Structure, 1274, 134434. https://doi.org/10.1016/j.molstruc.2022.134434 |
[9] | Thakurta, S., Butcher, R. J., Frontera, A. & Mitra, S. (2017). Theoretical investigation on molecular structure of a new mononuclear copper(II) thiocyanato complex with tridentate Schiff base ligand. Journal of Coordination Chemistry, 70 (22), 3715–3726. https://doi.org/10.1080/00958972.2017.1394460 |
[10] | Rigamonti, L., Forni, A., Cariati, E., Malavasi, G. & Pasini, A. (2019). Solid-state nonlinear optical properties of mononuclear copper(II) complexes with chiral tridentate and tetradentate Schiff base ligands. Materials, 12 (21), 3595. https://doi.org/10.3390/ma12213595 |
[11] | Ambrosi, G., Formica, M., Fusi, V., Giorgi, L. & Micheloni, M. (2008). Polynuclear metal complexes of ligands containing phenolic units. Coordination Chemistry Reviews, 252 (10), 1121–1152. https://doi.org/10.1016/j.ccr.2007.09.027 |
[12] | Fernández, M. I., Fondo, M., García-Deibe, A. M., Fernández, B., Rodríguez, M. J. & Bermejo, M. R. (2002). Rearrangement of manganese(III) complexes with asymmetrical N3O and N2O2 Schiff bases. Transition Metal Chemistry, 27 (4), 416–422. https://doi.org/10.1023/A:1015059221977 |
[13] | Zülfikaroğlu, A., Ataol, Ç. Y., Çelikoğlu, E., Çelikoğlu, U. & İdil, Ö. (2020). New Cu(II), Co(III) and Ni(II) metal complexes based on ONO donor tridentate hydrazone: synthesis, structural characterization, and investigation of some biological properties. Journal of Molecular Structure, 1199, 127012. https://doi.org/10.1016/j.molstruc.2019.127012 |
[14] | Maity, S., Ghosh, T. K., Ito, S., Bhunia, P., Ishida, T. & Ghosh, A. (2022). Structures and Magnetic Properties of carbonato-bridged hexanuclear NiII4LnIII2 (Ln = Gd, Tb, Dy) complexes formed by atmospheric carbon dioxide fixation in the absence of an external base. Crystal Growth & Design, 22 (7), 4332–4342. https://doi.org/10.1021/acs.cgd.2c00298 |
[15] | Zhao, S., Liu, X., Lü, X. & Wong, W.-K. (2013). Heterobinuclear Zn-Ln (Ln = La, Nd, Eu, Gd, Tb, Er and Yb) complexes based on asymmetric Schiff-base ligand: synthesis, characterization and photophysical properties. Luminescence, 28 (5), 690–695. https://doi.org/10.1002/bio.2417 |
[16] | Öz, S., Ergun, Ü., Yakut, M., Svoboda, I., Atakol, A., İnal, E. K., Yilmaz, N. & Atakol, O. (2014). Synthesis, crystal structure, chromatographic separation, and thermogravimetric investigation of a ONNO type asymmetric Schiff base and its trinuclear complexes. Russian Journal of Coordination Chemistry, 40 (8), 571–582. https://doi.org/10.1134/S1070328414080089 |
[17] | Adams, H., Clunas, S., Fenton, D. E., Gregson, T. J., McHugh, P. E. & Spey, S. E. (2002). The generation of a trinuclear nickel(II) core maintained by tridentate acetate bridges. Inorganic Chemistry Communications, 5 (3), 211–214. https://doi.org/10.1016/S1387-7003(02)00327-1 |
[18] | Singh, A., Gogoi, H. P., Barman, P. & Guha, A. K. (2022). Novel thioether Schiff base transition metal complexes: Design, synthesis, characterization, molecular docking, computational, biological, and catalytic studies. Applied Organometallic Chemistry, 36 (6), e6673. https://doi.org/10.1002/aoc.6673 |
[19] | Liu, D., Zhang, X., Zhu, L., Wu, J. & Lü, X. (2015). Alternating ring-opening copolymerization of styrene oxide and maleic anhydride using asymmetrical bis-Schiff-base metal(III) catalysts. Catalysis Science & Technology, 5 (1), 562–571. https://doi.org/10.1039/C4CY01064G |
[20] | Liu, D.-F., Zhu, L.-Q., Wu, J., Wu, L.-Y. & Lü, X.-Q. (2015). Ring-opening copolymerization of epoxides and anhydrides using manganese(III) asymmetrical Schiff base complexes as catalysts. RSC Advances, 5 (5), 3854–3859. https://doi.org/10.1039/C4RA08969C |
[21] | Shukla, S. N., Gaur, P., Raidas, M. L., Chaurasia, B. & Bagri, S. S. (2021). Novel NNO pincer type Schiff base ligand and its complexes of Fe(IIl), Co(II) and Ni(II): Synthesis, spectroscopic characterization, DFT, antibacterial and anticorrosion study. Journal of Molecular Structure, 1240, 130582. https://doi.org/10.1016/j.molstruc.2021.130582 |
[22] | Yang, J., Shi, R., Zhou, P., Qiu, Q. & Li, H. (2016). Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes. Journal of Molecular Structure, 1106, 242–258. https://doi.org/10.1016/j.molstruc.2015.10.092 |
[23] | Wang, X., Fan, R., Dong, Y., Su, T., Huang, J., Du, X., Wang, P. & Yang, Y. (2017). Metal(II)-induced synthesis of asymmetric fluorescence benzimidazoles complexes and their dye-sensitized solar cell performance as cosensitizers. Crystal Growth & Design, 17 (10), 5406–5421. https://doi.org/10.1021/acs.cgd.7b00891 |
[24] | Singh, K., Kumari, B. & Sharma, A. (2021). Copper(II), nickel(II), zinc(II) and cadmium(II) complexes of 1,2,4-triazole based Schiff base ligand: synthesis, comparative spectroscopic, thermal, biological, and molecular docking studies. Spectroscopy Letters, 54 (10), 742–762. https://doi.org/10.1080/00387010.2021.1996395 |
[25] | Al-Humaidi, J. Y. (2019). In situ alkaline media: Synthesis, spectroscopic, morphology and anticancer assignments of some transition metal ion complexes of 1-((2-aminophenylimino) methyl) naphthalen-2-ol Schiff base. Journal of Molecular Structure, 1183, 190–201. https://doi.org/10.1016/j.molstruc.2019.01.083 |
[26] | Zhang, G., Xia, X., Xu, J., Wu, H., Xia, L., Qu, Y. & Han, X. (2021). Synthesis, structure and property of two d-f heteronuclear Eu-TM (TM = Zn and Cd) complexes with open-chain ether Schiff base ligand. Journal of Molecular Structure, 1226, 129337. https://doi.org/10.1016/j.molstruc.2020.129337 |
[27] | Bell, D. J., Natrajan, L. S. & Riddell, I. A. (2022). Design of lanthanide based metal–organic polyhedral cages for application in catalysis, sensing, separation, and magnetism. Coordination Chemistry Reviews, 472, 214786. https://doi.org/10.1016/j.ccr.2022.214786 |
[28] | Dogaheh, S. G., Soleimannejad, J. & Sanudo, E. C. (2020). Asymmetric Schiff base ligand enables synthesis of fluorescent and near-IR emitting lanthanide compounds. Journal of Molecular Structure, 1219, 129060. https://doi.org/10.1016/j.molstruc.2020.129060 |
[29] | Chaudhary, N. K., Guragain, B., Chaudhary, S. K. & Mishra, P. (2021). Schiff base metal complex as a potential therapeutic drug in medical science: A critical review. BIBECHANA, 18 (1), 214–230. https://doi.org/10.3126/bibechana.v18i1.29841 |
[30] | Okeke, U., Otchere, R., Gultneh, Y. & Butcher, R. J. (2018). Crystal structure of tetrakis(μ2-(E)-2,4-dibromo-6-[2-(pyridin-2-yl)ethyl]iminomethylphenolato)trizinc bis(perchlorate) acetonitrile disolvate. Acta Crystallographica Section E, 74 (9), 1380–1383. https://doi.org/10.1107/S2056989018012100 |
[31] | Maity, S., Ghosh, S., Mahapatra, P. & Ghosh, A. (2018). Synthesis, structure and magnetic properties of three CuII2LnIII complexes (Ln = Pr, Nd and Sm) with an unsymmetrical Schiff base ligand. Inorganica Chimica Acta, 482, 807–812. https://doi.org/10.1016/j.ica.2018.07.023 |
[32] | Sall, O., Tamboura, F. B., Sy, A., Barry, A. H., Thiam, E. I., Gaye, M. & Ellena, J. (2019). Crystal structures of two CuII compounds: catena-poly[[chloridocopper(II)]-μ-N-[ethoxy(pyridin-2-yl)methylidene]-N-[oxido(pyridin-3-yl)methylidene]hydrazine-κ4N,N', O:N''] and di-μ-chlorido-1:4κ2Cl:Cl-2:3κ2Cl:Cl-dichlorido-2κCl,4κCl-bis[μ3-ethoxy(pyridin-2-yl)methanolato-1:2:3κ3O:N,O:O;1:3:4κ3O:O:N,O]bis[μ2-ethoxy(pyridin-2-yl)methanolato-1:2κ3N,O:O;3:4κ3N,O:O]tetracopper(II). Acta Crystallographica Section E, 75 (7), 1069–1075. https://doi.org/10.1107/S2056989019008922 |
[33] | Kébé, M., Thiam, I. E., Sow, M. M., Diouf, O., Barry, A. H., Sall, A. S., Retailleau, P. & Gaye, M. (2021). Hexanuclear copper(II) complex of 2-hydroxy-N,N'-bis[1-(2-hydroxyphenyl)ethylidene]propane-1,3-diamine incorporating an open-cubane core. Acta Crystallographica Section E, 77 (7), 708–713. https://doi.org/10.1107/S2056989021005570 |
[34] | Curtis, N. F. & Morgan, K. R. (2011). A tri-nuclear oxygen centred (salicylaldoximato)copper(II) compound: The preparation and structure of [Cu(saloxH)3O3H1.5]•Cl4.5•12DMSO•1.83H2O. Journal of Molecular Structure, 1006 (1-3), 375–378. https://doi.org/10.1016/j.molstruc.2011.09.034 |
[35] | Utradhar, M., Roy Barman, T., Alegria, E. C. B. A., Guedes da Silva, M. F. C., Liu, C.-M., Kou, H.-Z. & Pombeiro, A. J. L. (2019). Cu(II) complexes of N-rich aroylhydrazone: magnetism and catalytic activity towards microwave-assisted oxidation of xylenes. Dalton Trans., 48 (34), 12839–12849. https://doi.org/10.1039/C9DT02196E |
[36] | Buta, I., Nistor, M. A., Lönnecke, P., Hey-Hawkins, E., Muntean, S. G. & Costisor, O. (2021). One-dimensional cadmium(II) coordination polymers: Structural diversity, luminescence, and photocatalytic properties. Journal of Photochemistry and Photobiology A: Chemistry, 404, 112961. https://doi.org/10.1016/j.jphotochem.2020.112961 |
[37] | Mandlik, P. R. & Deshmukh, P. K. (2020). Synthesis, Spectroscopic Characterization, Thermal Analysis and Biological Studies of Hydrazone Schiff Base and its Co(II), Cu(II), Th(IV) and Zr(IV) Metals Complexes. Saudi Journal of Medicinal and Pharmaceutical Sciences, 6 (12), 724–732. https://doi.org/10.36348/sjmps.2020.v06i12.002 |
[38] | Sow, M. M., Diouf, O., Gaye, M., Sall, A. S., Pérez-Lourido, P., Valencia-Matarranz, L., Gastro, G., Caneschi, A. & Sorace, L. (2013). Synthesis, spectral characterization, and X-ray crystal structure of Fe(III) and Co(III) complexes with an acyclic Schiff base ligand. Inorganica Chimica Acta, 406, 171–175. https://doi.org/10.1016/j.ica.2013.07.018 |
[39] | El-Gammal, O. A., El-Reash, G. M. A., Ghazy, S. E. & Radwan, A. H. (2012). Synthesis, characterization, molecular modeling, and antioxidant activity of (1E,5E)-1,5-bis(1-(pyridin-2-yl)ethylidene)carbonohydrazide (H2APC) and its zinc(II), cadmium(II) and mercury(II) complexes. Journal of Molecular Structure, 1020, 6–15. https://doi.org/10.1016/j.molstruc.2012.04.029 |
[40] | Zhang, L., Wang, J.-J. & Xu, G.-C. (2014). The [2×2] grid tetranuclear Fe(II) and Mn(II) complexes: Structure and magnetic properties. Inorganic Chemistry Communications, 39, 66–69. https://doi.org/10.1016/j.inoche.2013.10.048 |
[41] | Dragancea, D., Shova, S., Enyedy, É. A., Breza, M., Rapta, P., Carrella, L. M., Rentschler, E, Dobrov, A. & Arion, V. B. (2014). Copper(II) complexes with 1,5-bis(2-hydroxybenzaldehyde)carbohydrazone. Polyhedron, 80, 180–192. https://doi.org/10.1016/j.poly.2014.03.039 |
[42] | Bikas, R., Hosseini-Monfared, H., Aleshkevych, P., Szymczak, R., Siczek, M. & Lis, T. (2015). Single crystal EPR spectroscopy, magnetic studies, and catalytic activity of a self-assembled [2×2] CuII4 cluster obtained from a carbohydrazone based ligand. Polyhedron, 88, 48–56. https://doi.org/10.1016/j.poly.2014.11.038 |
[43] | Li, J., Zhang, L., Xu, G.-C., Yu, W.-X. & Jia, D.-Z. (2014). A carbohydrazone based tetranuclear Co(II) complex: Self-assembly and magnetic property. Inorganic Chemistry Communications, 45, 40–43. https://doi.org/10.1016/j.inoche.2014.03.042 |
[44] | Moustapha-Sow, M., Diouf, O., Gaye, M., Salam-Sall, A., Castro, G., Pérez-Lourido, P., Valencia, L., Caneschi, A. & Sorace, L. (2013). Sheets of Tetranuclear Ni(II) [2 × 2] Square Grids Structure with Infinite Orthogonal Two-Dimensional Water–Chlorine Chains. Crystal Growth & Design, 13 (10), 4172–4176. https://doi.org/10.1021/cg400885f |
[45] | Fall, N., Faye, F. D., Gaye, A. A., Diouf, O. & Gaye, M. (2020). Synthesis of mono and bis-substituted asymmetrical compounds, 1-(2’-hydroxy-3’-methoxybenzylidene)carbonohydrazide and 1-(2’-hydroxy-3’-methoxybenzylidene)-5-(1’pyridylmethylene)carbonohydrazide: Structural characterization and antioxidant activity study. Journal of Applied Chemistry (IOSR-JAC), 13 (12), 22–30. https://doi:10.9790/5736-1312022230 |
[46] | Sheldrick, G. M. (2015). SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370 |
[47] | Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218 |
[48] | Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45 (4), 849–854. https://doi.org/10.1107/S0021889812029111 |
[49] | Ilhan, S., Temel, H., Kilic, A. & Tas, E. (2007). Synthesis and spectral characterization of macrocyclic NiII complexes derived from various diamines, NiII perchlorate and 1,4-bis(2-carboxyaldehydephenoxy)butane. Transition Metal Chemistry, 32 (8), 1012–1017. https://doi.org/10.1007/s11243-007-0260-0 |
[50] | Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coordination Chemistry Reviews, 7 (1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0 |
[51] | Chikate, R. C. & Padhye, S. B. (2005). Transition metal quinone–thiosemicarbazone complexes 2: Magnetism, ESR and redox behavior of iron (II), iron (III), cobalt (II) and copper (II) complexes of 2-thiosemicarbazido-1,4-naphthoquinone. Polyhedron, 24 (13), 1689–1700. https://doi.org/10.1016/j.poly.2005.04.037 |
[52] | Kumar, M., Kishor, S., Kumar, A., Bhagi, A. K. & John, R. P. (2020). Structural characterisation and theoretical study of a dinuclear copper(II) complex bridged by meta-phenylenediiminophenolate moiety. Journal of Molecular Structure, 1199, 126996. https://doi.org/10.1016/j.molstruc.2019.126996 |
[53] | Burgos-Lopez, Y., Plá, J. D., Balsa, L. M., León, I. E., Echeverría, G. A., Piro, O. E., García-Tojal, J., Pis-Diez, R., González-Baró, A. C., Parajón-Costa, B. S. (2019). Synthesis, crystal structure and cytotoxicity assays of a copper(II) nitrate complex with a tridentate ONO acylhydrazone ligand. Spectroscopic and theoretical studies of the complex and its ligand. Inorganica Chimica Acta, 487, 31–40. https://doi.org/10.1016/j.ica.2018.11.039 |
APA Style
Ndiouga Fall, Bocar Traore, Mbosse Ndiaye-Gueye, Ousmane Diouf, Ibrahima Elhadji Thiam, et al. (2023). Synthesis, Spectroscopic Characterization, and X-ray Structure of the Co-crystal Copper(II) Complex of the Dissymmetrical 1-(2 hydroxy-3-methoxybenzylidene)-5-(pyridin-2 ylmethylene) Carbnohydrazide Ligand. Science Journal of Chemistry, 11(1), 18-25. https://doi.org/10.11648/j.sjc.20231101.13
ACS Style
Ndiouga Fall; Bocar Traore; Mbosse Ndiaye-Gueye; Ousmane Diouf; Ibrahima Elhadji Thiam, et al. Synthesis, Spectroscopic Characterization, and X-ray Structure of the Co-crystal Copper(II) Complex of the Dissymmetrical 1-(2 hydroxy-3-methoxybenzylidene)-5-(pyridin-2 ylmethylene) Carbnohydrazide Ligand. Sci. J. Chem. 2023, 11(1), 18-25. doi: 10.11648/j.sjc.20231101.13
AMA Style
Ndiouga Fall, Bocar Traore, Mbosse Ndiaye-Gueye, Ousmane Diouf, Ibrahima Elhadji Thiam, et al. Synthesis, Spectroscopic Characterization, and X-ray Structure of the Co-crystal Copper(II) Complex of the Dissymmetrical 1-(2 hydroxy-3-methoxybenzylidene)-5-(pyridin-2 ylmethylene) Carbnohydrazide Ligand. Sci J Chem. 2023;11(1):18-25. doi: 10.11648/j.sjc.20231101.13
@article{10.11648/j.sjc.20231101.13, author = {Ndiouga Fall and Bocar Traore and Mbosse Ndiaye-Gueye and Ousmane Diouf and Ibrahima Elhadji Thiam and Simon Coles and James Orton and Mohamed Gaye}, title = {Synthesis, Spectroscopic Characterization, and X-ray Structure of the Co-crystal Copper(II) Complex of the Dissymmetrical 1-(2 hydroxy-3-methoxybenzylidene)-5-(pyridin-2 ylmethylene) Carbnohydrazide Ligand}, journal = {Science Journal of Chemistry}, volume = {11}, number = {1}, pages = {18-25}, doi = {10.11648/j.sjc.20231101.13}, url = {https://doi.org/10.11648/j.sjc.20231101.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20231101.13}, abstract = {In the pentanuclear title complex, bis{μ2-1-(2-oxido-3-methoxybenzylidene)-5-(pyridin-2-ylmethylene)carbonohydrazide}-1κ4O,N,N’,N’’:2κ2O,N;2κ2O,N:3κ4O,N,N’,N’’-1,2,3-tricopper(II) bis{[1-(2-oxido-3-methoxybenzylidene)-5-(pyridin-2-ylmethylene)carbonohydrazide]-κ4O,N,N’,N’’-copper(II)} tetraperchlorate tetrahydrate (1), two monocationic mononuclear units and one dianionic trinuclear unit co-exist. The CuII centers in the mononuclear units as well as the two terminal CuII centers in the trinuclear unit are located in the N3O cavity of the ligand and are coordinated to a phenolate oxygen atom, to a pyridine nitrogen atom, to an imino nitrogen atom and to a hydrazinyl nitrogen atom. The third central Cu(II) atom in the trinuclear unit, which is hexacoordinated, is located in N2O4. The metal center is coordinated to two ligand molecule through one imino nitrogen atom one oxygen atom of a carbonyl moiety per ligand and two oxygen atom of water molecules. The tetracoordinated copper(II) ions are situated in distorted square planar environments, while the hexacoordinated copper(II) is located in octahedral geometry. In the mononuclear units, as well as in the trinuclear units, the methoxy oxygen atoms remain uncoordinated. Each atom of the uncoordinated perchlorate anions is disordered over two sets of sites in a 0.5 ratio. Four free water molecules are also present. In the crystal, the trinuclear cationic unit and the mononuclear cationic units are assembled into infinite layers. These layers are held together via electrostatic interactions, forming a three-dimensional structure.}, year = {2023} }
TY - JOUR T1 - Synthesis, Spectroscopic Characterization, and X-ray Structure of the Co-crystal Copper(II) Complex of the Dissymmetrical 1-(2 hydroxy-3-methoxybenzylidene)-5-(pyridin-2 ylmethylene) Carbnohydrazide Ligand AU - Ndiouga Fall AU - Bocar Traore AU - Mbosse Ndiaye-Gueye AU - Ousmane Diouf AU - Ibrahima Elhadji Thiam AU - Simon Coles AU - James Orton AU - Mohamed Gaye Y1 - 2023/02/14 PY - 2023 N1 - https://doi.org/10.11648/j.sjc.20231101.13 DO - 10.11648/j.sjc.20231101.13 T2 - Science Journal of Chemistry JF - Science Journal of Chemistry JO - Science Journal of Chemistry SP - 18 EP - 25 PB - Science Publishing Group SN - 2330-099X UR - https://doi.org/10.11648/j.sjc.20231101.13 AB - In the pentanuclear title complex, bis{μ2-1-(2-oxido-3-methoxybenzylidene)-5-(pyridin-2-ylmethylene)carbonohydrazide}-1κ4O,N,N’,N’’:2κ2O,N;2κ2O,N:3κ4O,N,N’,N’’-1,2,3-tricopper(II) bis{[1-(2-oxido-3-methoxybenzylidene)-5-(pyridin-2-ylmethylene)carbonohydrazide]-κ4O,N,N’,N’’-copper(II)} tetraperchlorate tetrahydrate (1), two monocationic mononuclear units and one dianionic trinuclear unit co-exist. The CuII centers in the mononuclear units as well as the two terminal CuII centers in the trinuclear unit are located in the N3O cavity of the ligand and are coordinated to a phenolate oxygen atom, to a pyridine nitrogen atom, to an imino nitrogen atom and to a hydrazinyl nitrogen atom. The third central Cu(II) atom in the trinuclear unit, which is hexacoordinated, is located in N2O4. The metal center is coordinated to two ligand molecule through one imino nitrogen atom one oxygen atom of a carbonyl moiety per ligand and two oxygen atom of water molecules. The tetracoordinated copper(II) ions are situated in distorted square planar environments, while the hexacoordinated copper(II) is located in octahedral geometry. In the mononuclear units, as well as in the trinuclear units, the methoxy oxygen atoms remain uncoordinated. Each atom of the uncoordinated perchlorate anions is disordered over two sets of sites in a 0.5 ratio. Four free water molecules are also present. In the crystal, the trinuclear cationic unit and the mononuclear cationic units are assembled into infinite layers. These layers are held together via electrostatic interactions, forming a three-dimensional structure. VL - 11 IS - 1 ER -